Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Testing methods and statistical models of genomic prediction for quantitative disease resistance to Phytophthora sojae in soybean [Glycine max (L.) Merr] germplasm collections.

Identifieur interne : 000037 ( Main/Exploration ); précédent : 000036; suivant : 000038

Testing methods and statistical models of genomic prediction for quantitative disease resistance to Phytophthora sojae in soybean [Glycine max (L.) Merr] germplasm collections.

Auteurs : William R. Rolling [États-Unis] ; Anne E. Dorrance [États-Unis] ; Leah K. Mchale [États-Unis]

Source :

RBID : pubmed:32960288

Abstract

KEY MESSAGE

Genomic prediction of quantitative resistance toward Phytophthora sojae indicated that genomic selection may increase breeding efficiency. Statistical model and marker set had minimal effect on genomic prediction with > 1000 markers. Quantitative disease resistance (QDR) toward Phytophthora sojae in soybean is a complex trait controlled by many small-effect loci throughout the genome. Along with the technical and rate-limiting challenges of phenotyping resistance to a root pathogen, the trait complexity can limit breeding efficiency. However, the application of genomic prediction to traits with complex genetic architecture, such as QDR toward P. sojae, is likely to improve breeding efficiency. We provide a novel example of genomic prediction by measuring QDR to P. sojae in two diverse panels of more than 450 plant introductions (PIs) that had previously been genotyped with the SoySNP50K chip. This research was completed in a collection of diverse germplasm and contributes to both an initial assessment of genomic prediction performance and characterization of the soybean germplasm collection. We tested six statistical models used for genomic prediction including Bayesian Ridge Regression; Bayesian LASSO; Bayes A, B, C; and reproducing kernel Hilbert spaces. We also tested how the number and distribution of SNPs included in genomic prediction altered predictive ability by varying the number of markers from less than 50 to more than 34,000 SNPs, including SNPs based on sequential sampling, random sampling, or selections from association analyses. Predictive ability was relatively independent of statistical model and marker distribution, with a diminishing return when more than 1000 SNPs were included in genomic prediction. This work estimated relative efficiency per breeding cycle between 0.57 and 0.83, which may improve the genetic gain for P. sojae QDR in soybean breeding programs.


DOI: 10.1007/s00122-020-03679-w
PubMed: 32960288


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Testing methods and statistical models of genomic prediction for quantitative disease resistance to Phytophthora sojae in soybean [Glycine max (L.) Merr] germplasm collections.</title>
<author>
<name sortKey="Rolling, William R" sort="Rolling, William R" uniqKey="Rolling W" first="William R" last="Rolling">William R. Rolling</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Applied Plant Science and Center for Soybean Research, The Ohio State University, Columbus, OH, 43210, US.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Applied Plant Science and Center for Soybean Research, The Ohio State University, Columbus, OH, 43210</wicri:regionArea>
<wicri:noRegion>43210</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Vegetable Crop Research Unit, USDA-ARS, Madison, WI, 53706, US.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Vegetable Crop Research Unit, USDA-ARS, Madison, WI, 53706</wicri:regionArea>
<wicri:noRegion>53706</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dorrance, Anne E" sort="Dorrance, Anne E" uniqKey="Dorrance A" first="Anne E" last="Dorrance">Anne E. Dorrance</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Applied Plant Science and Center for Soybean Research, The Ohio State University, Columbus, OH, 43210, US.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Applied Plant Science and Center for Soybean Research, The Ohio State University, Columbus, OH, 43210</wicri:regionArea>
<wicri:noRegion>43210</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology, The Ohio State University, Wooster, OH, 44691, US.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, The Ohio State University, Wooster, OH, 44691</wicri:regionArea>
<wicri:noRegion>44691</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mchale, Leah K" sort="Mchale, Leah K" uniqKey="Mchale L" first="Leah K" last="Mchale">Leah K. Mchale</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Applied Plant Science and Center for Soybean Research, The Ohio State University, Columbus, OH, 43210, US. mchale.21@osu.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Applied Plant Science and Center for Soybean Research, The Ohio State University, Columbus, OH, 43210</wicri:regionArea>
<wicri:noRegion>43210</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, 43210, US. mchale.21@osu.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, 43210</wicri:regionArea>
<wicri:noRegion>43210</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32960288</idno>
<idno type="pmid">32960288</idno>
<idno type="doi">10.1007/s00122-020-03679-w</idno>
<idno type="wicri:Area/Main/Corpus">000056</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000056</idno>
<idno type="wicri:Area/Main/Curation">000056</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000056</idno>
<idno type="wicri:Area/Main/Exploration">000056</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Testing methods and statistical models of genomic prediction for quantitative disease resistance to Phytophthora sojae in soybean [Glycine max (L.) Merr] germplasm collections.</title>
<author>
<name sortKey="Rolling, William R" sort="Rolling, William R" uniqKey="Rolling W" first="William R" last="Rolling">William R. Rolling</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Applied Plant Science and Center for Soybean Research, The Ohio State University, Columbus, OH, 43210, US.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Applied Plant Science and Center for Soybean Research, The Ohio State University, Columbus, OH, 43210</wicri:regionArea>
<wicri:noRegion>43210</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Vegetable Crop Research Unit, USDA-ARS, Madison, WI, 53706, US.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Vegetable Crop Research Unit, USDA-ARS, Madison, WI, 53706</wicri:regionArea>
<wicri:noRegion>53706</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dorrance, Anne E" sort="Dorrance, Anne E" uniqKey="Dorrance A" first="Anne E" last="Dorrance">Anne E. Dorrance</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Applied Plant Science and Center for Soybean Research, The Ohio State University, Columbus, OH, 43210, US.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Applied Plant Science and Center for Soybean Research, The Ohio State University, Columbus, OH, 43210</wicri:regionArea>
<wicri:noRegion>43210</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology, The Ohio State University, Wooster, OH, 44691, US.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, The Ohio State University, Wooster, OH, 44691</wicri:regionArea>
<wicri:noRegion>44691</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mchale, Leah K" sort="Mchale, Leah K" uniqKey="Mchale L" first="Leah K" last="Mchale">Leah K. Mchale</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Applied Plant Science and Center for Soybean Research, The Ohio State University, Columbus, OH, 43210, US. mchale.21@osu.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Applied Plant Science and Center for Soybean Research, The Ohio State University, Columbus, OH, 43210</wicri:regionArea>
<wicri:noRegion>43210</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, 43210, US. mchale.21@osu.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, 43210</wicri:regionArea>
<wicri:noRegion>43210</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik</title>
<idno type="eISSN">1432-2242</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>KEY MESSAGE</b>
</p>
<p>Genomic prediction of quantitative resistance toward Phytophthora sojae indicated that genomic selection may increase breeding efficiency. Statistical model and marker set had minimal effect on genomic prediction with > 1000 markers. Quantitative disease resistance (QDR) toward Phytophthora sojae in soybean is a complex trait controlled by many small-effect loci throughout the genome. Along with the technical and rate-limiting challenges of phenotyping resistance to a root pathogen, the trait complexity can limit breeding efficiency. However, the application of genomic prediction to traits with complex genetic architecture, such as QDR toward P. sojae, is likely to improve breeding efficiency. We provide a novel example of genomic prediction by measuring QDR to P. sojae in two diverse panels of more than 450 plant introductions (PIs) that had previously been genotyped with the SoySNP50K chip. This research was completed in a collection of diverse germplasm and contributes to both an initial assessment of genomic prediction performance and characterization of the soybean germplasm collection. We tested six statistical models used for genomic prediction including Bayesian Ridge Regression; Bayesian LASSO; Bayes A, B, C; and reproducing kernel Hilbert spaces. We also tested how the number and distribution of SNPs included in genomic prediction altered predictive ability by varying the number of markers from less than 50 to more than 34,000 SNPs, including SNPs based on sequential sampling, random sampling, or selections from association analyses. Predictive ability was relatively independent of statistical model and marker distribution, with a diminishing return when more than 1000 SNPs were included in genomic prediction. This work estimated relative efficiency per breeding cycle between 0.57 and 0.83, which may improve the genetic gain for P. sojae QDR in soybean breeding programs.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">32960288</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>19</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-2242</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>133</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2020</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik</Title>
<ISOAbbreviation>Theor Appl Genet</ISOAbbreviation>
</Journal>
<ArticleTitle>Testing methods and statistical models of genomic prediction for quantitative disease resistance to Phytophthora sojae in soybean [Glycine max (L.) Merr] germplasm collections.</ArticleTitle>
<Pagination>
<MedlinePgn>3441-3454</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00122-020-03679-w</ELocationID>
<Abstract>
<AbstractText Label="KEY MESSAGE" NlmCategory="UNASSIGNED">Genomic prediction of quantitative resistance toward Phytophthora sojae indicated that genomic selection may increase breeding efficiency. Statistical model and marker set had minimal effect on genomic prediction with > 1000 markers. Quantitative disease resistance (QDR) toward Phytophthora sojae in soybean is a complex trait controlled by many small-effect loci throughout the genome. Along with the technical and rate-limiting challenges of phenotyping resistance to a root pathogen, the trait complexity can limit breeding efficiency. However, the application of genomic prediction to traits with complex genetic architecture, such as QDR toward P. sojae, is likely to improve breeding efficiency. We provide a novel example of genomic prediction by measuring QDR to P. sojae in two diverse panels of more than 450 plant introductions (PIs) that had previously been genotyped with the SoySNP50K chip. This research was completed in a collection of diverse germplasm and contributes to both an initial assessment of genomic prediction performance and characterization of the soybean germplasm collection. We tested six statistical models used for genomic prediction including Bayesian Ridge Regression; Bayesian LASSO; Bayes A, B, C; and reproducing kernel Hilbert spaces. We also tested how the number and distribution of SNPs included in genomic prediction altered predictive ability by varying the number of markers from less than 50 to more than 34,000 SNPs, including SNPs based on sequential sampling, random sampling, or selections from association analyses. Predictive ability was relatively independent of statistical model and marker distribution, with a diminishing return when more than 1000 SNPs were included in genomic prediction. This work estimated relative efficiency per breeding cycle between 0.57 and 0.83, which may improve the genetic gain for P. sojae QDR in soybean breeding programs.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Rolling</LastName>
<ForeName>William R</ForeName>
<Initials>WR</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0001-6893-9872</Identifier>
<AffiliationInfo>
<Affiliation>Center for Applied Plant Science and Center for Soybean Research, The Ohio State University, Columbus, OH, 43210, US.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Vegetable Crop Research Unit, USDA-ARS, Madison, WI, 53706, US.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dorrance</LastName>
<ForeName>Anne E</ForeName>
<Initials>AE</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0003-4138-6707</Identifier>
<AffiliationInfo>
<Affiliation>Center for Applied Plant Science and Center for Soybean Research, The Ohio State University, Columbus, OH, 43210, US.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, The Ohio State University, Wooster, OH, 44691, US.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>McHale</LastName>
<ForeName>Leah K</ForeName>
<Initials>LK</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0003-1028-2315</Identifier>
<AffiliationInfo>
<Affiliation>Center for Applied Plant Science and Center for Soybean Research, The Ohio State University, Columbus, OH, 43210, US. mchale.21@osu.edu.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, 43210, US. mchale.21@osu.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>Hatch project OHO01303</GrantID>
<Agency>National Institute of Food and Agriculture, U.S. Department of Agriculture</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>Hatch project OHO01279</GrantID>
<Agency>National Institute of Food and Agriculture, U.S. Department of Agriculture</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>09</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Theor Appl Genet</MedlineTA>
<NlmUniqueID>0145600</NlmUniqueID>
<ISSNLinking>0040-5752</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>05</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>09</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>9</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>9</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>9</Month>
<Day>22</Day>
<Hour>12</Hour>
<Minute>12</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32960288</ArticleId>
<ArticleId IdType="doi">10.1007/s00122-020-03679-w</ArticleId>
<ArticleId IdType="pii">10.1007/s00122-020-03679-w</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Rolling, William R" sort="Rolling, William R" uniqKey="Rolling W" first="William R" last="Rolling">William R. Rolling</name>
</noRegion>
<name sortKey="Dorrance, Anne E" sort="Dorrance, Anne E" uniqKey="Dorrance A" first="Anne E" last="Dorrance">Anne E. Dorrance</name>
<name sortKey="Dorrance, Anne E" sort="Dorrance, Anne E" uniqKey="Dorrance A" first="Anne E" last="Dorrance">Anne E. Dorrance</name>
<name sortKey="Mchale, Leah K" sort="Mchale, Leah K" uniqKey="Mchale L" first="Leah K" last="Mchale">Leah K. Mchale</name>
<name sortKey="Mchale, Leah K" sort="Mchale, Leah K" uniqKey="Mchale L" first="Leah K" last="Mchale">Leah K. Mchale</name>
<name sortKey="Rolling, William R" sort="Rolling, William R" uniqKey="Rolling W" first="William R" last="Rolling">William R. Rolling</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000037 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000037 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32960288
   |texte=   Testing methods and statistical models of genomic prediction for quantitative disease resistance to Phytophthora sojae in soybean [Glycine max (L.) Merr] germplasm collections.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32960288" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024